首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11132篇
  免费   561篇
  国内免费   663篇
电工技术   191篇
综合类   509篇
化学工业   825篇
金属工艺   4911篇
机械仪表   361篇
建筑科学   39篇
矿业工程   128篇
能源动力   407篇
轻工业   20篇
水利工程   3篇
石油天然气   43篇
武器工业   85篇
无线电   351篇
一般工业技术   3396篇
冶金工业   820篇
原子能技术   102篇
自动化技术   165篇
  2024年   14篇
  2023年   225篇
  2022年   183篇
  2021年   371篇
  2020年   357篇
  2019年   348篇
  2018年   304篇
  2017年   328篇
  2016年   254篇
  2015年   290篇
  2014年   448篇
  2013年   758篇
  2012年   501篇
  2011年   950篇
  2010年   548篇
  2009年   687篇
  2008年   623篇
  2007年   642篇
  2006年   654篇
  2005年   533篇
  2004年   522篇
  2003年   461篇
  2002年   329篇
  2001年   264篇
  2000年   255篇
  1999年   223篇
  1998年   179篇
  1997年   203篇
  1996年   131篇
  1995年   128篇
  1994年   115篇
  1993年   82篇
  1992年   73篇
  1991年   55篇
  1990年   49篇
  1989年   42篇
  1988年   21篇
  1987年   28篇
  1986年   30篇
  1985年   15篇
  1984年   22篇
  1983年   17篇
  1982年   21篇
  1981年   15篇
  1980年   14篇
  1979年   9篇
  1978年   14篇
  1977年   5篇
  1976年   7篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
21.
ABSTRACT

Key factors affecting an application of two rare-earth metals cerium and scandium as alloying elements in aluminium are critically assessed. Having similar abundance in the Earth’s crust, their cost and consumption differ by three to four orders of magnitude. The spectacular increment of alloy strength, achieved by scandium through the coherent, nano-scale, L12-ordered Al3Sc precipitates is faced by the prohibitive cost barrier. For cerium, the low cost is accompanied by rather limited strengthening effects: negligible solid-state solubility of cerium in aluminium makes age hardening ineffective so the alloy strength depends on the Al11Ce3 eutectic phase, formed during solidification. As a result, there are still no commercial aluminium alloys with large-scale applications that take advantage of cerium, scandium or their combination.  相似文献   
22.
23.
Layered double hydroxides (LDHs) as a class of anionic clays have extensive applications due to their unique structures. Nowadays, the emphasis is laid on the development of LDH coatings for corrosion resistance and medical applications. Thus, this review highlights synthetic methods of LDH coatings and LDH-based composite coatings on magnesium alloys. Special attention is focused on self-healing, biocompatible and self-cleaning LDH-based composite coatings on magnesium alloys.  相似文献   
24.
In the present work, the possibilities of tailoring crystallographic texture via cross rolling are presented. It is shown that a strong rotated Brass texture develops upon cross rolling in aluminium alloys which also remains intact during the subsequent recrystallisation annealing treatment. The governing mechanisms behind the evolution of deformation and recrystallisation texture are discussed in terms of effect of strain path on stability of deformation texture components and strain-induced boundary migration mechanism, respectively. In addition, the likelihood of rotated Brass texture having a positive effect on formability is discussed in terms of sluggish cross-slip criteria as the rotated Brass texture presents a unique scenario where cross-slip is inhibited along all the three principal directions.  相似文献   
25.
The corrosion performances of Mg–4Y–xAl (x = 1, 2, 3, and 4 wt%) alloys in the 3.5% NaCl electrolyte solution are investigated by electrochemical tests, weight loss measurement and corrosion morphology observation. The results indicate that corrosion modes for the alloys are localized corrosion and the filiform type of attack. With Al concentration increasing from 1 to 4 wt%, the corrosion rate of Mg–4Y–xAl alloys decreases firstly and then increases, and WA42 alloy shows the best corrosion resistance. The addition of Al element to Mg–4Y alloys leads to the formation of Al2Y and Al11Y3 intermetallic compounds and reduces the proportion of Mg24Y5 phase. Corrosion resistance of the Mg–4Y–xAl alloys mainly depends on the size and distribution of the second phases. Besides, the addition of excessive Al can greatly consumes the Y element in the matrix, thus leading to a less protective film on the alloys. The effect of the relative Volta potential changes between the second phases and α-Mg on corrosion resistance of Mg–4Y–xAl alloys is insignificant. The main corrosion products of the Mg–4Y–xAl alloys are Mg(OH)2, Mg3(OH)5Cl·4H2O, Mg0.72Al0.28(CO3)0.15(OH)1.98(H2O)0.48, and Mg4Al2(OH)12CO3·3H2O.  相似文献   
26.
In this work, the as-cast Mg-rich Mg98.5Gd1Zn0.5 and Mg98.5Gd0.5Y0.5Zn0.5 alloys are prepared by the semi-continuous casting method, and their hydrogen storage performance and catalytic mechanisms are investigated by experimental and first-principles calculations approaches. The results show that the LPSO phases decompose and in-situ form the RE(Gd/Y)Hx(x = 2,3) nano-hydrides upon hydrogenation. These nano-hydrides not only serve as the in-situ catalysts to promote the hydrogen ab/desorption of Mg matrix, but also present the pinning effect to inhibit the growth of Mg/MgH2 grains during hydrogenation and dehydrogenation. Comparatively, the two alloys exhibit the similar hydrogen absorption kinetics, while the hydrogen desorption kinetics of Mg98.5Gd1Zn0.5 is superior to that of Mg98.5Gd0.5Y0.5Zn0.5. The first-principles calculations reveal that the GdH2 and YH2 hydrides exhibit different catalytic effects on weakening the bond strength of H–H within H2 and Mg–H within MgH2, which interprets well the differences in the hydrogen ab/desorption kinetics between Mg98.5Gd1Zn0.5 and Mg98.5Gd0.5Y0.5Zn0.5 alloys.  相似文献   
27.
In order to improve the hydrogen storage performances of TiFe-based alloys, a new type of TiFe0.8-mNi0.2Com (m = 0, 0.03, 0.05 and 0.1) alloys were prepared through vacuum medium-frequency induction melting. XPS results showed that the composition of surface oxide film contains TiO2, FeO and NiO for the cobalt-free alloy, and it also includes CoO and Co3O4 besides the above oxides for the cobalt-containing alloys. The activation temperature is 523, 403, 383 and 373 K for the TiFe0.8-mNi0.2Com (m = 0, 0.03, 0.05 and 0.1) alloys, respectively. The changes of the composition and microstructure of the surface oxide film are the root causes of the reduction of the activation temperature. XRD and SEM analyses showed that all the alloys are composed of the majority phase of TiFe phase and non-hydrogenated phase of Ti2Fe phase. Adding appropriate amount of cobalt is beneficial to inhibiting the generation of Ti2Fe phase and increasing the cell volume of TiFe phase. The hydrogenation capacity is proportional to the content of TiFe phase, which is 1.11, 1.48, 1.54 and 1.29 wt% for the TiFe0.8-mNi0.2Com (m = 0, 0.03, 0.05 and 0.1) alloys at 313 K, respectively. The hydrogenation plateau performance also is improved correspondingly.  相似文献   
28.
To further explore the application feasibility of Zr2Co alloy in tritium-related fields, hydrogenation/dehydrogenation properties of this material of crystalline or amorphous structure, prepared by arc melting or melt spinning, were studied by pressure-composition temperature measurement, X-ray diffraction, differential scanning calorimeter, thermal desorption spectroscopy. It was found that the two kinds of Zr2Co alloys can absorb hydrogen in a close full concentration of ~9 mmol/g, and may have similar equilibrium hydrogen pressure in the order of 10?6 Pa at room temperature. In their hydrogenated samples various hydrides were observed to form, including ZrH2, Zr2CoH5, ZrCoH3 and an amorphous one with gradually decreasing general thermostability. The amorphous alloy exhibited easier hydrogen induced disproportionation caused by highly stable ZrH2 and much slower hydrogen absorption kinetics. This disproportionation behavior of the crystalline alloy was found to be entirely suppressed by changing heating process. The results firmly indicate that crystalline Zr2Co alloy could be more favorable for tritium treatment due to very low equilibrium pressure and the feasibility of eliminating the disproportionation.  相似文献   
29.
This work deals with the development of quantitative correlations of hydrogen evolution performance with solidification microstructural and thermal parameters in Al–1Sn, Al–2Sn, Al–1Fe, and Al-1.5Fe [wt.%] alloys. The cellular growth as a function of growth and cooling rates is evaluated using power type experimental laws, which allow determining representative intervals of microstructure length scale for comparison purposes with the results of immersion tests in 5 wt%NaOH solution. For both Al alloys systems, hydrogen evolution becomes slower as the alloy solute content increased. However, for a given alloy composition, whereas a more homogeneous distribution of Sn-rich particles promotes faster hydrogen generation using Al–Sn alloys, coarsening of Al6Fe IMCs (intermetallic compounds) fibers favors hydrogen production using Al–Fe alloys. When solidification conditions that result in a range of cellular spacings within 16 and 19 μm are considered, the specific hydrogen production of the Al-1wt.%Fe alloy is higher than that of the other studied alloys.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号